
Chapter 5
Network Security I

Contents

5.1 Network Security Concepts 222
5.1.1 Network Topology 222
5.1.2 Internet Protocol Layers 223
5.1.3 Network Security Issues 227

5.2 The Link Layer . 229
5.2.1 Ethernet . 229
5.2.2 Media Access Control (MAC) Addresses 232
5.2.3 ARP Spoofing . 233

5.3 The Network Layer . 236
5.3.1 IP . 236
5.3.2 Internet Control Message Protocol 240
5.3.3 IP Spoofing . 242
5.3.4 Packet Sniffing . 244

5.4 The Transport Layer . 246
5.4.1 Transmission Control Protocol (TCP) 246
5.4.2 User Datagram Protocol (UDP) 250
5.4.3 Network Address Translation (NAT) 251
5.4.4 TCP Session Hijacking 253

5.5 Denial-of-Service Attacks 256
5.5.1 ICMP Attacks . 256
5.5.2 SYN Flood Attacks 258
5.5.3 Optimistic TCP ACK Attack 260
5.5.4 Distributed Denial-of-Service 261
5.5.5 IP Traceback . 262

5.6 Exercises . 264

221

222 Chapter 5. Network Security I

5.1 Network Security Concepts

The Internet was originally conceived, during the Cold War, as a way of
creating a communication network that was robust enough to survive a mil-
itary attack. For this reason, rather than basing communication on switched
paths that connect communicating parties, the Internet was designed so
that communication occurs through sequences of data packets. A data
packet is a finite-length set of bits, which is divided into two parts: a header,
which specifies where the packet is going and contains various overhead
and bookkeeping details, and a payload, which is the actual information
that is being communicated. So if two entities wish to communicate using
the Internet, they must chop their messages into packets, attach a header
on the front of each one, and then have those packets find their way
through the Internet to reach their respective destinations. In this chapter,
we explore the underlying technologies that make the Internet possible,
including its security risks and some defense mechanisms.

5.1.1 Network Topology

A network’s connection structure is known as its network topology. The
computers in a network are host nodes that can be sources and destinations
of messages, and the routers in the network are communication nodes
through which messages flow. (See Figure 5.1.) The physical connections
between nodes define the channels through which messages travel, so that
packets move by being passed from one node to the next in order to get
from their source node to their destination node.

A private network composed of computers in relatively close proximity
to each other is known as a local area network, or LAN. In contrast, the
Internet is what is referred to today as a wide area network, or WAN,
composed of many machines and smaller networks spread out over great
distances. In addition, the routers in wide-area networks on the Internet
are partitioned into clusters, which are called autonomous systems (ASs).
Each autonomous system is controlled by a single organizational entity,
which determines how packets will be routed among the nodes in that AS.
Typically, this routing within an AS is done using shortest paths, so that the
number of hops to route a packet from one node to another in this AS is
minimized and routing cycles are avoided. The routing between multiple
ASs, on the other hand, is determined by contractual agreements, but it is
still designed to avoid loops.

5.1. Network Security Concepts 223

Network

Figure 5.1: A computer network composed of host nodes (shown as com-
puters on the periphery) and communication nodes (shown as routers in
the interior).

5.1.2 Internet Protocol Layers

Before delving into the wide range of security issues the Internet creates,
it is important to understand the underlying building blocks that comprise
it. The architecture of the Internet is modeled conceptually as being parti-
tioned into layers, which collectively are called the Internet protocol stack.
Each layer provides a set of services and functionality guarantees for higher
layers and, to the extent possible, each layer does not depend on details or
services from higher levels. Likewise, the interface each layer provides to
higher levels is designed to provide only the essential information from this
layer that is needed by the higher levels—lower-level details are hidden
from the higher levels. The exact number and names of the layers of the
Internet protocols vary slightly, but is usually five or seven, depending on
what source we consider as authoritative.

224 Chapter 5. Network Security I

Five Conceptual Layers for Internet Communication

The following division into five layers is fairly standard.

1. Physical layer. The task of the physical layer is to move the actual
bits between the nodes of the network, on a best effort basis. For
example, this level deals with details related to whether connections
are done with copper wires, coaxial cables, optical-fiber cables, or
wireless radio. The abstraction it provides to the next higher level
is an ability to transmit bits between a pair of network nodes.

2. Link layer. The task of the link layer is to transfer data between a pair
of network nodes or between nodes in a local-area network and to
detect errors that occur at the physical layer. This layer, for instance,
deals with the logical aspects of sending information across network
links and how to find good routing paths in a local-area network. It
includes such protocols as Ethernet, which is used to route packets
between computers sharing a common connection. The link layer
provides a grouping of bits into ordered records, called frames. The
link layer uses 48-bit addresses, called media access control addresses
(MAC addresses).

3. Network layer. The task of the network layer, which is also known
as the Internet layer for the Internet, is to provide for the moving of
packets between any two hosts, on a best effort basis. It provides
a way of individually addressing each host using a numerical label,
called its IP address. The main protocol provided by this layer is the
Internet Protocol (IP), which is subdivided into a version 4 (IPv4),
which uses 32-bit IP addresses, and a version 6 (IPv6), which uses
128-bit IP addresses. Best effort basis means there are no guarantees
that any given packet will be delivered. Thus, if reliable delivery is
required by an application, it will have to be provided by a higher
layer.

4. Transport layer. The task of the transport layer is to support commu-
nication and connections between applications, based on IP addresses
and ports, which are 16-bit addresses for application-level protocols
to use. The transport layer provides a protocol, the Transmission Con-
trol Protocol (TCP), which establishes a virtual connection between a
client and server and guarantees delivery of all packets in an ordered
fashion, and a protocol, the User Datagram Protocol (UDP), which
assumes no prior setup and delivers packets as quickly as possible
but with no delivery guarantees.

5.1. Network Security Concepts 225

5. Application layer. The task of the application layer is to provide
protocols that support useful functions on the Internet, based on the
services provided by the transport layer. Examples include HTTP,
which uses TCP and supports web browsing, DNS, which uses UDP
and supports the use of useful names for hosts instead of IP addresses,
SMTP and IMAP, which use TCP and support electronic mail, SSL,
which uses TCP and supports secure encrypted connections, and
VoIP, which uses UDP and supports Internet telephone messaging.

The Open Systems Interconnection (OSI) model differs slightly from
that above, in that it has seven layers, as the application layer is divided
into a strict application layer, for host application-to-network processes, a
presentation layer, for data representation, and session layer, for interhost
communication. We will use the five-layer model in this book, however,
which is called the TCP/IP model, so as to focus on the security issues of
the Internet. A packet for a given layer in this model consists of the data to
be transmitted plus metadata providing routing and control information.
The metadata is stored in the initial portion of the packet, called header and
sometimes also in the final portion of the packet, called footer. The data
portion of the packet is referred to as the payload. For all but the topmost
layer, the payload stores a packet of the layer immediately above. This
nesting of packets is called encapsulation and is illustrated in Figure 5.2.

Application

Data

TCP Data
TCP

Header

IP

Header IP Data

Frame

Header

Frame

FooterFrame Data Link Layer

Network Layer

Transport Layer

Application Layer

Figure 5.2: Packet encapsulation in the link, network, transport, and appli-
cation layers of the Internet protocol stack. Each packet from a higher layer
becomes the data for the next lower-layer packet, with headers added to
the beginning, and, for frames, a footer added at the end.

226 Chapter 5. Network Security I

Using the Internet Protocol Suite

The Internet Protocol stack provides a useful set of functions and abstrac-
tions that make the Internet possible, but we should point out that these
functions and abstractions were, for the most part, designed during a time
when the Internet was almost exclusively populated by people with no
malicious intent. A challenge for today, then, is to figure out ways of
building in security and safeguards into Internet protocols, which is the
main theme of the remainder of this chapter and the next.

The layered model used for the Internet Protocol Suite helps system
designers to build software that uses appropriate services and provides
the right service guarantees, without troubling with unnecessary imple-
mentation details. For example, a web server transmitting content to a
client’s web browser would probably do so using the HTTP application-
layer protocol. The HTTP packet would most likely be encapsulated in the
payload of a TCP transport-layer packet. In turn, the TCP packet would be
contained in the payload of an IP packet, which in turn would be wrapped
in an appropriate link-layer protocol such as Ethernet, to be transferred
over a physical means of transmission. (See Figure 5.3.)

Network Connections

Communication Between Components in the Internet Protocol Stack

Application Application

Transport Transport

Network NetworkNetwork NetworkNetwork NetworkNetwork Network

Link LinkLink Link

Physical:
Ethernet Fiber

O ti Wi-FiOptics

Figure 5.3: Connections and communication needed to send data from a
host through two routers to another host.

5.1. Network Security Concepts 227

5.1.3 Network Security Issues

Connecting computers to a network, like the Internet, so they can exchange
data and share computations allows for huge benefits to society. Indeed, it
is hard to imagine what life today would be like without the Internet. But
computer networking also allows for a number of attacks on computers and
information. So let us revisit some of the principles of computer security,
which were discussed in Chapter 1, focusing now on how they are impacted
by computer networking.

How Networking Impacts Computer Security Goals

• Confidentiality. There is no requirement, in any of the layering
abstractions discussed above, that the contents of network packets
be kept confidential. In fact, standard protocols for each layer don’t
encrypt the contents of either their headers or their data. Thus, if net-
work communications should be kept confidential, then encryption
should be done explicitly. This encryption could either be done at the
application layer (as in the HTTPS protocol) or by revising a lower-
layer protocol to include encryption, such as in the IPsec specification
(Section 6.3.2).

• Integrity. The headers and footers that encapsulate data packets
have, at each layer, simple checksums to validate the integrity of
data and/or header contents. These checksums are effective at de-
termining if a small number of bits have been altered, but they are
not cryptographically secure, so they don’t provide integrity in the
computer security sense. Thus, if true integrity is required, then
this should also be done at the application layer or with alternative
protocols at lower layers.

• Availability. The Internet was designed to tolerate failures of routers
and hosts. But the sheer size of the Internet makes availability a
challenge for any network object that needs to be available on a 24/7
basis. For instance, web servers can become unavailable because they
become bombarded with data requests. Such requests could come
from hoards of legitimate users suddenly interested in that web site or
from an attack coming from many compromised hosts that is meant to
create a denial of service for the web site. Thus, to achieve availability
at the scale of the Internet, we need network applications that can
scale with increases in communication requests and/or block attacks
from illegitimate requests.

228 Chapter 5. Network Security I

• Assurance. As a default, a packet is allowed to travel between any
source and destination in a network. Thus, if we want to introduce
permissions and policies that control how data flows in a network,
these have to be implemented as explicit additions. For instance,
network firewalls are designed to block traffic in and out of a network
domain if that traffic violates policies set by administrators.

• Authenticity. The headers and footers for the standard Internet pro-
tocols do not have a place to put digital signatures. Indeed, in the
Internet Protocol stack, there is no notion of user identities. Data is
exchanged between machines and processes, not people. Thus, if we
want to introduce identities and allow for signatures, then we must
do so explicitly at the application layer or with an alternative protocol.

• Anonymity. Since there is no default notion of identity of users of
the Internet, it has a built-in anonymity. This anonymity is probably
a good thing for a human rights worker reporting on abuses, but it’s
probably bad if it lets an identity thief steal credit card numbers with-
out being caught. Attacks on anonymity can come from technologies
that identify the computer a person is using. Likewise, people can
replicate many copies of a process and place these copies at multiple
hosts in the network, thus achieving a level of anonymity.

We illustrate some network attacks against these principles in Figure 5.4.

Denial‐of‐Service Man‐in‐the‐Middle

Eavesdropping Masquerading
Victim Network

Figure 5.4: Some network-based attacks.

5.2. The Link Layer 229

5.2 The Link Layer

Most modern operating systems include a TCP/IP implementation and
allow programs to interact with the Internet Protocol stack via a simple
interface. Operating system libraries include support for the upper levels
of the TCP/IP stack, including the passing of data to physical-layer device
drivers, starting with the link layer, which is right above the physical layer
and provides a concept of grouping sequences of bits into frames.

5.2.1 Ethernet

One of the most popular ways to transmit Internet traffic is Ethernet,
which refers to both the physical medium used (typically a cable) as well
as the link-layer protocol standardized as IEEE 802.3. When a frame is
transmitted on an Ethernet cable, an electrical impulse is sent through that
cable and received by other machines that are logically connected to that
cable on the same local-area network (LAN). The portion of a local-area
network that has the same logical connection is called a network segment.
If two machines on the same network segment each transmit a frame at
the same time, a collision occurs and these frames must be discarded and
retransmitted. Fortunately, the Ethernet protocol can deal with such events
using a random-wait strategy. (See Figure 5.5.)

Wait 24 microsecondsWait 24 microseconds
Wait 102 microseconds

Wait 77 microseconds

Wait 43 microseconds

Figure 5.5: An Ethernet collision and how it is handled.

230 Chapter 5. Network Security I

Dealing with Collisions

In the event of a collision, each of the transmitting machines waits a random
amount of time, usually measured in microseconds, and then retransmits,
in the hope of avoiding a second collision. If other collisions occur, then this
process of randomly waiting and retransmitting is repeated. The Ethernet
protocol is designed so that eventually every machine in a network segment
will succeed in transmitting its frame. Incidentally, this collision resolution
protocol was originally needed even for two machines connected by a
single (coaxial) cable, since such cables are not bidirectional, but modern
network cables can transmit data in both directions, so this collision resolu-
tion process only applies to network segments that contain more than two
machines. That is, two machines connected by a modern Ethernet cable
can send and receive messages without accounting for the possibility of
collisions. But packet collisions can nevertheless become a major source of
slowdown for local-area networks if there are larger numbers of machines
logically connected to each other. Indeed, this can already be an issue with
home networks, since it is not uncommon for such networks to include
several computers, a couple of network printers, and at least one Wi-Fi
access point. So, even for a home network, it is useful to know how to
connect machines so as to minimize collisions.

Hubs and Switches

The simplest way to connect machines in a local-area network is to use an
Ethernet hub, which is a device that logically connects multiple devices
together, allowing them to act as a single network segment. Hubs typi-
cally forward all frames to all attached devices, doing nothing to separate
each attached device, much like a splitter used to double the audio signal
from an MP3 player. Thus, the machines that are connected to a hub,
or a set of connected hubs, form a single network segment and must all
participate in the Ethernet collision resolution protocol. Hubs may generate
large amounts of unnecessary traffic, since each frame is duplicated and
broadcast to all the machines connected on the same network segment.
In addition, the fact that all frames are forwarded to each machine in
the segment, regardless of the intended destination, increases the ease of
network eavesdropping, as discussed in Section 5.3.4.

Fortunately, there is a better way to connect machines in a small local-
area network—namely, to use an Ethernet switch. When devices are first
connected to an Ethernet switch, it acts much like a hub, sending out
frames to all connected machines. Over time, however, a switch learns the
addresses of the machines that are connected to its various ports. Given

5.2. The Link Layer 231

this address information, a switch will then only forward each frame it
receives along the cable it knows is connected to the destination for that
frame. Even so, if a frame is designated as one that should be broadcast to
all the machines on a network segment, a switch will still act like a hub and
send that frame out to all its connected machines.

The selectivity that comes from a switch learning the addresses of the
machines it connects reduces the possibilities for collisions and increases
the effective speed of the network, that is, its effective bandwidth. In ad-
dition, a switch reduces the risks of network eavesdropping, since network
frames forwarded by a switch are less likely to be seen by machines that are
not destinations.

Due to decreasing costs in networking technology, switches have be-
come the de facto standard for link layer data forwarding. We illustrate the
difference between a hub and a switch in Figure 5.6.

Hub
DataSource

Destination

(a)

Switch
DataSource

Destination

(b)

Figure 5.6: Hub vs. switch: (a) A hub copies and transmits traffic to all
attached devices. (b) A switch only transmits frames to the appropriate
destination device.

232 Chapter 5. Network Security I

5.2.2 Media Access Control (MAC) Addresses

Network interfaces are typically identified by a hardware-specific identifier
known as its media access control address (MAC address). A MAC address
is a 48-bit identifier assigned to a network interface by its manufacturer. It
is usually represented by a sequence of six pairs of hexadecimal digits, e.g.,
00:16:B7:29:E4:7D, and every device that connects to a network has one.

MAC addresses are used in the link layer to identify the devices in
a network; hence, MAC addresses are intended to be unique for each
interface. Typically, the first 24 bits are a prefix identifying the organization
that issued the MAC address (these prefixes are issued by IEEE). This
information can sometimes be used to identify the brand or model of a
particular interface on a network. Thus, the remaining 24 bits are left to a
manufacturer to set so that each of its different model instances have unique
MAC addresses. Fortunately, there are 224 = 16, 777, 216 possibilities for
these 24 bits, so that even if a manufacturer has to start reusing MAC
addresses, the chance of two devices on the same network having the same
manufacturer-assigned MAC address is on the order of a one-in-a-million.

Despite the fact that they are designed to be unique identifiers, MAC
addresses can be changed by software through the driver of the network
interface. Network administrators can use this functionality to issue their
own MAC addresses to network interfaces on their network. These lo-
cally administered MAC addresses are distinguished from MAC addresses
issued by a manufacturer by a standardized identifier bit. In a locally
administered MAC address, the second-least-significant bit of the most
significant byte is set to 1, while in a manufacturer-issued MAC, this bit
is set to 0. Because MAC addresses can be trivially changed using software,
such as the ifconfig utility on Linux, they cannot be used as a reliable means
of identifying an untrusted source of network traffic.

MAC addresses are used at the link layer to facilitate the routing of
frames to the correct destination. In particular, switches learn the location of
network devices from their MAC addresses and they forward frames to the
appropriate segments based on this knowledge. The format of an Ethernet
frame is depicted in Figure 5.7. Note that each such frame contains its
source and destination MAC addresses, a CRC-32 checksum for confirming
data integrity, and a payload section, which contains data from higher lay-
ers, such as the IP layer. The CRC-32 checksum is a simple function of the
contents of the frame and it is designed to catch transmission errors, such as
if a 0 bit in the frame is accidentally changed to a 1 during transmission. In
particular, this checksum is not designed for strong authentication of device
identities—it is not as secure as a digital signature.

5.2. The Link Layer 233

Bits Field

0 to 55 Preamble (7 bytes)

56 to 63 Start-of-Frame delimiter (1 byte)

64 to 111 MAC destination (6 bytes)

112 to 159 MAC source (6 bytes)

160 to 175 Ethertype/Length (2 bytes)

176 to 543+ Payload (46-1500 bytes)

543+ to 575+ CRC-32 checksum (4 bytes)

575+ to 671+ Interframe gap (12 bytes)

Header

Footer

Payload

Figure 5.7: The format of an Ethernet frame.

5.2.3 ARP Spoofing

The Address Resolution Protocol (ARP) is a link-layer protocol that pro-
vides services to the network layer. ARP is used to find a host’s hardware
address given its network layer address. Most commonly, it is used to
determine the MAC address associated with a given IP address, which
is clearly a valuable service. Unfortunately, there is a man-in-the-middle
attack against this protocol, which is called ARP spoofing.

How ARP Works

Suppose a source machine wants to send a packet to a destination machine
on the local-area network. At the network layer, the source machine knows
the destination IP address. Since the sending of the packet is delegated
to the link layer, however, the source machine needs to identify the MAC
address of the destination machine. In the ARP protocol, the resolution of
IP addresses into MAC addresses is accomplished by means of a broadcast
message that queries all the network interfaces on a local-area network, so
that the proper destination can respond.

234 Chapter 5. Network Security I

How ARP Spoofing is Done

An ARP request for an IP address, such as 192.168.1.105, is of the type:

“Who has IP address 192.168.1.105?”

This request is sent to all the machines on the local-area network. The
machine with IP address 192.168.1.105, if any, responds with an ARP reply
of the type:

“192.168.1.105 is at 00:16:B7:29:E4:7D”

This ARP reply is transmitted in a frame addressed only to the machine that
made the ARP request. When this machine receives the ARP reply, it stores
the IP-MAC address pair locally in a table, called its ARP cache, so it does
not have to continually resolve that particular IP address. After this ARP
resolution, the source can finally send its data to its destination.

The ARP protocol is simple and effective, but it lacks an authentication
scheme. Any computer on the network could claim to have the requested IP
address. In fact, any machine that receives an ARP reply, even if it was not
preceded by a request, will automatically update its ARP cache with the
new association. Because of this shortcoming, it is possible for malicious
parties on a LAN to perform the ARP spoofing attack.

This attack is relatively straightforward. An attacker, Eve, simply sends
an ARP reply to a target, who we will call Alice, who associates the IP
address of the LAN gateway, who we will call Bob, with Eve’s MAC
address. Eve also sends an ARP reply to Bob associating Alice’s IP address
with Eve’s MAC address. After this ARP cache poisoning has taken place,
Bob thinks Alice’s IP address is associated with Eve’s MAC address and
Alice thinks Bob’s IP address is associated with Eve’s MAC address. Thus,
all traffic between Alice and Bob (who is the gateway to the Internet) is
routed through Eve, as depicted in Figure 5.8.

Once accomplished, this establishes a man-in-the-middle scenario,
where the attacker, Eve, has control over the traffic between the gateway,
Bob, and the target, Alice. Eve can choose to passively observe this traffic,
allowing her to sniff passwords and other sensitive information, or she can
even tamper with the traffic, altering everything that goes between Alice
and Bob. A simple denial-of-service attack is also possible.

The power of ARP spoofing is derived from the lack of identity verifica-
tion in the Internet’s underlying mechanisms. This attack requires users
to take caution in securing their local networks. Fortunately, there are
several means of preventing ARP spoofing, besides restricting LAN access
to trusted users. One simple technique involves checking for multiple
occurrences of the same MAC address on the LAN, which may be an
indicator of possible ARP spoofing.

5.2. The Link Layer 235

Bob

(a) Before ARP spoofing

IP: 192.168.1.1
MAC: 00:11:22:33:44:01

IP: 192.168.1.105
MAC: 00:11:22:33:44:02

192.168.1.105 is at
00:11:22:33:44:03

ARP Cache

192.168.1.105 00:11:22:33:44:02

ARP Cache

192.168.1.1 00:11:22:33:44:01

Poisoned ARP Cache

192.168.1.1 00:11:22:33:44:03

Poisoned ARP Cache

192.168.1.105 00:11:22:33:44:03

Data

192.168.1.1 is at
00:11:22:33:44:01

192.168.1.105 is at
00:11:22:33:44:02

(b) After ARP spoofing

Data Data

192.168.1.1 is at
00:11:22:33:44:03

Alice
Internet

Internet

Bob

IP: 192.168.1.106
MAC 00:11:22:33:44:03 Eve

Alice

Figure 5.8: ARP spoofing enables a man-in-the-middle attack: (a) Before the
ARP spoofing attack. (b) After the attack.

Another solution, known as static ARP tables, requires a network
administrator to manually specify a router’s ARP cache to assign certain
MAC addresses to specific IP addresses. When using static ARP tables,
ARP requests to adjust the cache are ignored, so ARP spoofing of that router
is impossible. This requires the inconvenience of having to manually add
entries for each device on the network, however, and reduces flexibility
when a new device joins the network, but significantly mitigates the risk of
ARP cache poisoning. Moreover, this solution does not prevent an attacker
from spoofing a MAC address to intercept traffic intended for another host
on the network.

For more complex and flexible defense techniques, many software solu-
tions exist that carefully inspect all ARP packets and compare their contents
with stored records of ARP entries, detecting and preventing spoofing.
Examples include programs such as anti-arpspoof, XArp, and Arpwatch.

236 Chapter 5. Network Security I

5.3 The Network Layer

The task of the network layer is to move packets between any two hosts in
a network, on a best effort basis. It relies on the services provided by the
link layer to do this. As with the link layer, there are a number of computer
security issues that are associated with the network layer.

5.3.1 IP

The Internet Protocol (IP) is the network-level protocol that performs a
best effort to route a data packet from a source node to a destination node
in the Internet. In IP, every node is given a unique numerical address,
which is a 32-bit number under version 4 of the protocol (IPv4) and is a
128-bit number under version 6 of the protocol (IPv6). Both the source and
destination of any transmission are specified by an IP address.

Routing IP Packets

A host such as a desktop PC, server, or smartphone, employs a simple
algorithm for routing packets from that host (see Figure 5.9):
• If the packet is addressed to a machine on the same LAN as the host,

then the packet is transmitted directly on the LAN, using the ARP
protocol to determine the MAC address of the destination machine.

• If the packet is addressed to a machine that is not on the LAN, then the
packet is transmitted to a specially designated machine on the LAN,
called a gateway, which will handle the next step of the routing. The
ARP protocol is used to determine the MAC address of the gateway.

Thus, a host typically stores a list of the IP addresses of the machines on its
LAN, or a compact description of it, and the IP address of the gateway.

Once a packet has reached a gateway node, it needs to be further routed
to its final destination on the Internet. Gateways and other intermediate
network nodes that handle the routing of packets on the Internet are called
routers. They are typically connected to two or more LANs and use internal
data structures, known as routing tables, to determine the next router to
which a packet should be sent. Given a data packet with destination t, a
routing table lets a router determine which of its neighbors it should send
this packet to. This determination is based on the numerical address, t,
and the routing protocol that encodes the next hop from this router to each
possible destination.

5.3. The Network Layer 237

client

LAN A
gateway

router

router

router

server A router

router
router

router gateway

LAN B server Brouter
router gateway

Figure 5.9: Routing on the Internet. A first packet, from the client to Server
A, is sent directly over LAN A. The transmission of the first packet is shown
with a dashed arrow. A second packet, from the source to Server B, is
sent first to the gateway of LAN A, then forwarded by several intermediate
routers, and finally delivered to Server B by the gateway of LAN B. The path
followed by the second packet is shown with thick solid arrows. Adjacent
routers are themselves connected via LANs. The route of a packet may not
be the shortest path (in terms of number of edges or total delay) between
the source and destination.

Misconfigurations in the routing tables may cause a packet to travel
forever aimlessly along a cycle of routers. To prevent this possibility and
other error conditions that keep unroutable packets in the network, each IP
packet is given a time-to-live (TTL) count by its source. This TTL value,
which is also known as a hop limit, can be as large as 255 hops and is
decremented by each router that processes the packet. If a packet’s TTL
ever reaches zero, then the packet is discarded and an error packet is sent
back to the source. A packet with TTL equal to zero is said to be expired
and should be discarded by a router that sees it.

238 Chapter 5. Network Security I

The Structure of the Internet

Routers are designed to be very fast. For each packet received, the router
performs one of three possible actions.

• Drop. If the packet is expired, it is dropped.

• Deliver. If the destination is a machine on one of the LANs to which
the router is connected, then the packet is delivered to the destination.

• Forward. If the destination of the packet does not belong to the LANs
of the router, then the packet is forwarded to a neighboring router.

There are two primary protocols that determine how the next hops
are encoded in Internet routing tables, Open Shortest Path First (OSPF)
and Border Gateway Protocol (BGP). OSPF determines how packets are
routed within an autonomous system and is based on a policy that packets
should travel along shortest paths. BGP, on the other hand, determines
how packets are routed between autonomous systems (ASs) and it is based
on policies dictated by contractual agreements between different ASs The
routes established by BGP may not be shortest paths.

Note the difference between a router and a switch. A switch is a simple
device that handles forwarding of packets on a single network and uses
learned associations to reduce the use of broadcasting. A router, on the
other hand, is a sophisticated device that can belong to multiple networks
and uses routing tables to determine how to forward packets, thereby
avoiding broadcast altogether.

The bits in an IP packet have a careful structure. Each IP packet consists
of a fixed-length header, which is partitioned into various fields, shown
in Figure 5.10, followed by a variable-length data portion. Note that the
header has specific fields, including the total length of the packet, the time-
to-live (TTL) for this packet, the source IP address, and the destination IP
address.

Although it does not guarantee that each packet successfully travels
from its source to its destination, IP does provide a means to detect if packet
headers are damaged along the way. Each IP packet comes with a checksum
value, which is computed on its header contents. Any host or router
wishing to confirm that this header is intact simply needs to recompute
this checksum function and compare the computed checksum value to the
checksum value that is stored inside the packet. Since some parts of the
header, like the time-to-live, are modified with each hop, this checksum
value must be checked and recomputed by each router that processes this
packet. The protocol field of an IP packet specifies the higher level protocol
that should receive the payload of the packet, such as ICMP, TCP, or UDP,
which are described later in this chapter.

5.3. The Network Layer 239

Bit Offset 0-3 4-7 8-15 16-18 19-31

0 Version Header
length

Service Type Total Length

32 Identification Flags Fragment Offset

64 Time to Live Protocol Header Checksum

96 Source Address

128 Destination Address

160 (Options)

160+ Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

…

Header

Payload

Figure 5.10: Format of an IPv4 packet.

As mentioned above, the Internet is divided into autonomous systems,
so routing tables have to be able to direct traffic to clusters of nodes, not
just individual destination. To facilitate this ability, the IP addressing
scheme takes into account the fact that networks are partitioned into log-
ical groupings known as subnetworks, or more commonly, subnets. As
mentioned, IPv4 addresses are 32-bit numbers that are stored as binary
but typically written as 4 bytes, such as 192.168.1.100. IP addresses can
be divided into two portions, a network portion that denotes an IP prefix
used by all machines on a particular network, and a host portion which
identifies a particular network device. These two portions are differentiated
by providing a subnet mask along with the IP address. The network portion
of the IP address can be identified by bitwise ANDing the subnet mask with
the IP address, and the host portion can be identified by XORing this result
with the IP address. (See Table 5.1.)

Address Binary
A IP address 192.168.1.100 11000000.10101000.00000001.01100100
B Subnet mask 255.255.255.0 11111111.11111111.11111111.00000000
C Network part (A ∧ B) 192.168.1.0 11000000.10101000.00000001.00000000
D Host part (A⊕ C) 0.0.0.100 00000000.00000000.00000000.01100100

Table 5.1: Network and host portions of IP addresses and subnet masks.

240 Chapter 5. Network Security I

Subnet masks are used to define the address range of a particular
network. Ranges of IP addresses are based on the size of the organization
in question. A Class A network, which is the largest, has a subnet mask
of at least 8 bits and includes up to 224 = 16, 777, 216 unique IP addresses.
Class A networks are typically reserved for large government organizations
and telecommunications companies. Class B networks have at least a 16-bit
subnet mask and up to 216 = 65, 536 unique IP addresses; they are typically
allocated for ISPs and large businesses. Finally, Class C networks have
at least a 24-bit subnet mask, include up to 28 = 256 unique addresses,
and are assigned to smaller organizations. IP addresses with the host
portion consisting of all zeros or all ones have a special meaning and are
not used for to identify machines. Thus, a class C network has 254 usable
IP addresses.

The original designers of the Internet could not predict the massive
degree to which it would be adopted around the world. Interestingly, at
the time of this writing, the total address space for IPv4 is on the verge
of exhaustion: soon, all possible IPv4 addresses will be assigned. Although
Network Address Translation, or NAT (Section 5.4.3), delays the exhaustion
of the IPv4 address space, it doesn’t solve it, and an actual solution is
provided by IPv6, which features 128-bit addresses.

5.3.2 Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is a network-layer protocol
that is used by hosts to perform a number of basic testing and error noti-
fication tasks. ICMP is primarily used for network diagnostic tasks, such
as determining if a host is alive and finding the path followed by a packet.
ICMP packets carry various types of messages, including the following:

• Echo request: Asks the destination machine to acknowledge the re-
ceipt of the packet

• Echo response: Acknowledges the receipt of a packet in reply to an
echo request

• Time exceeded: Error notification that a packet has expired, that is, its
TTL is zero

• Destination unreachable: Error notification that the packet could not
be delivered

Several network management tools use the above ICMP messages, in-
cluding the popular ping and traceroute utilities.

5.3. The Network Layer 241

Ping

Ping is another utility that uses the ICMP protocol to verify whether or not
a particular host is receiving packets. Ping sends an ICMP echo request
message to the destination host, which in turn replies with an ICMP echo
response message. This remarkably simple protocol is often the first diag-
nosis tool used to test if hosts are working properly.

Traceroute

The traceroute utility uses ICMP messages to determine the path a packet
takes to reach another host, either on a local network or on the Internet. It
accomplishes this task with a clever use of the time-to-live (TTL) field in
the IP header. First, it attempts to send a packet to the target with a TTL of
1. On receiving a packet with a TTL of 1, an intermediate router discards
the packet and replies to the sender with an ICMP time exceeded message,
revealing the first machine along the path to the target. Next, traceroute
sends a packet with a TTL of 2. On reaching the first router in the path, the
TTL is decremented by one and forwarded to the next router, which in turn
sends an ICMP packet to the original sender. By incrementing the TTL field
in this way, traceroute can determine each host along the path to the target.
The traceroute utility is illustrated in Figure 5.11.

echo request, TTL = 1

time exceeded

echo request, TTL = 2

h t TTL 3

time exceeded

echo request, TTL = 3

echo request, TTL = 4

time exceeded

q ,

echo response

Figure 5.11: The traceroute utility.

242 Chapter 5. Network Security I

5.3.3 IP Spoofing

Each IP packet includes a place to specify the IP addresses of the destination
and source nodes of the packet. The validity of the source address is never
checked, however, and it is trivial for anyone to specify a source address
that is different from their actual IP address. In fact, nearly every operating
system provides an interface by which it can make network connections
with arbitrary IP header information, so spoofing an IP address is a simple
matter of specifying the desired IP in the source field of an IP packet data
structure before transmitting that data to the network. Such modification
of the source address to something other than the sender’s IP address is
called IP spoofing. (See Figure 5.12.) IP spoofing does not actually allow an
attacker to assume a new IP address by simply changing packet headers,
however, because his actual IP address stays the same.

Bit Offset 0-3 4-7 8-15 16-18 19-31

0 Version Header
length

Service Type Total Length

32 Identification Flags Fragment Offset

64 Time to Live Protocol Header Checksum

96 Source Address

128 Destination Address

160 (Options)

160+ Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data
Data

…

Over-write
source address
with a different
IP address

Figure 5.12: How IP spoofing works. The source address in the header of an
IP packet is simply overwritten with a different IP address from the actual
source. Note the header checksum field also needs to be updated.

5.3. The Network Layer 243

How IP Spoofing is Used in Other Attacks

If an attacker sends an IP packet with a spoofed source address, then he
will not receive any response from the destination server. In fact, with a
spoofed source IP address on an outbound packet, the machine with the
spoofed IP address will receive any response from the destination server,
not the attacker.

Therefore, if an attacker is using IP spoofing on his outbound packets,
he must either not care about any responses for these packets or he has
some other way of receiving responses. For example, in denial-of-service
attacks (which are discussed in more detail in Section 5.5), the attacker
doesn’t want to receive any responses back—he just wants to overwhelm
some other Internet host with data requests. Alternatively, in IP spoofing
attacks that are designed for circumventing firewall policy (Section 6.2) or
TCP session hijacking (Section 5.4.4), the attacker has another, nonstandard
way of getting response packets.

Dealing with IP Spoofing

Although it cannot be prevented, there are a number of ways of dealing
with IP spoofing. For example, border routers, which are routers that
span two or more subnetworks, can be configured to block packets from
outside their administrative domain that have source addresses from inside
that domain. Such packets are likely to be spoofed so as to appear they
are coming from inside the subnetwork, when in fact they are coming
from outside the domain. Similarly, such routers can also block outgoing
traffic with source addresses from outside the domain. Such packets could
indicate that someone inside the subnetwork is trying to launch an attack
that uses IP spoofing, so this type of blocking could be an indication that
machines inside the subnetwork have been taken over by a malware attack
or are otherwise controlled by malicious parties.

In addition, IP spoofing can be combated by implementing IP traceback
techniques, as discussed in Section 5.5.5. IP traceback involves methods
for tracing the path of a packet back to its actual source address. Given this
information, requests can then be made to the various autonomous systems
along this path to block packets from this location. The ISP controlling the
actual source address can also be asked to block suspicious machines en-
tirely until it is determined that they are clean of any malware or malicious
users.

244 Chapter 5. Network Security I

5.3.4 Packet Sniffing

Because most data payloads of IP packets are not encrypted, the Internet
Protocol allows for some types of eavesdropping, further compromising
confidentiality. In particular, it is possible to listen in on the traffic in a
network that is intended for the Internet. This process is known as packet
sniffing, and can be performed independently of whether the packets are
traveling via wireless Internet or through a wired Internet, provided the
attacker resides on the same network segment.

As discussed in Section 5.2.1, when frames are transmitted over an
Ethernet network, they are received by every device on the same network
segment. Each network interface in this segment will normally compare
the frame’s destination MAC address with its own MAC address, and
discard the frame if it doesn’t match. If a network interface is operating
in promiscuous mode, however, it will retain all frames and read their
contents. Setting a network interface to promiscuous mode allows an
attacker to examine all data transmitted over a particular network segment,
potentially recovering sensitive information such as passwords and other
data. Combined with network analysis tools such as Wireshark, this data
can be extracted from the raw packets. (See Figure 5.13.)

Figure 5.13: An example use of the Wireshark packet-sniffing tool. Here,
the packet associated with an HTTP request to www.example.com has been
captured and analyzed.

5.3. The Network Layer 245

Defenses Against Packet Sniffing

Using a packet-sniffing tool such as Wireshark is not necessarily malicious.
For instance, packet sniffing is commonly used to troubleshoot network-
related problems or to determine if a computer is infected with adware or
spyware (and is contacting outside IP addresses without the user’s knowl-
edge or consent). But packet sniffing can also be malicious, for instance if it
is used to spy on unsuspecting members of a network.

There are several measures that can be put in place to prevent unwanted
packet sniffing, besides the obvious precaution of preventing unauthorized
access to a private network. For example, using Ethernet switches as op-
posed to hubs potentially reduces the number of machines on an attacker’s
network segment, which reduces the amount of traffic that may be sniffed.
Note that there is no analog to the switch when communicating wirelessly,
however. Since all wireless traffic is transmitted over the air, any device on
the same wireless network may sniff traffic from any other device.

It may also be possible to detect when network devices are in promis-
cuous mode, although this has proven to be difficult in practice. One
technique takes into account the fact that when a network interface is
receiving all network traffic, the operating system behind that network
interface is using much more processing power than if these frames were
being dropped. Therefore, responses from that interface may be slightly
delayed in comparison to those issued by interfaces not in promiscuous
mode. Alternately, attempting to elicit responses to invalid packets from
network devices may provide clues suggesting that a device is in promis-
cuous mode. For example, sending a packet to a suspected machine’s IP
address with a nonmatching MAC address would ordinarily be dropped by
that network device, but if it is running in promiscuous mode, a response
might be issued.

Despite these precautions and detection measures, packet sniffing re-
mains a risk that should not be underestimated, especially on networks
that may include malicious parties. To reduce the impact of packet sniffing,
encryption mechanisms should be utilized in higher-level protocols to pre-
vent attackers from recovering sensitive data. As an example, web traffic
ordinarily contains an HTTP packet at the application layer, encapsulated
in a TCP packet at the transport layer, and an IP packet at the network
layer, and then an appropriate link layer frame such as Ethernet or 802.11
wireless. In a packet-sniffing scenario, an attacker can examine all HTTP
content in an intercepted packet because no encryption is used at any layer.
If the HTTPS protocol, which employs encryption at the application layer,
is used instead, then even if an attacker sniffs traffic, the contents will be
encrypted and so will be indecipherable to the attacker.

246 Chapter 5. Network Security I

5.4 The Transport Layer

The transport layer builds on top of the network layer, which supports
communication between machines, to provide for communication between
processes. This extended addressing capability is achieved in the trans-
port layer by viewing each machine (which has just one IP address) as
having a collection of ports, each of which is capable of being the source
or destination port for communication with a port on another machine.
Indeed, the transport layer protocols for the Internet specify 16-bit source
and destination port numbers in their headers. Each port is meant to be
associated with a certain type of service offered by a host.

Two primary protocols operate at the transport layer for the Internet:
the Transmission Control Protocol (TCP) and the User Datagram Protocol
(UDP). TCP is the more sophisticated of these two and was defined together
with IP as one of the original protocols for the Internet, which is why people
sometimes refer to Internet protocols as “TCP/IP.” TCP is used for some of
the most fundamental operations of the Internet.

The main extra feature of TCP is that it is connection oriented and
provides a reliable stream of bytes between two communicating parties
with a guarantee that information arrives intact and in order. If a packet
in such a stream is lost, TCP guarantees that it will be resent, so that there is
no actual loss of data. Thus, TCP is the preferred protocol for transferring
files, web pages, and email.

UDP, on the other hand, provides a best-effort communication channel
between two ports. It is used primarily for applications where communica-
tion speed is more important than completeness, such as in a voice-over-IP
conversation, where short drops are acceptable (as one might get from one
lost packet), but not long pauses (as one might get from waiting for a lost
packet to be resent).

5.4.1 Transmission Control Protocol (TCP)

TCP is a critical protocol for the Internet, since it takes the IP protocol,
which routes packets between machines in a best effort fashion, and creates
a protocol that can guarantee transmission of a stream of bits between two
virtual ports. If a process needs to send a complete file to another computer,
for instance, rather than do the hard work of chopping it into IP packets,
sending them to the other machine, double-checking that all the packets
made it intact, and resending any that were lost, the process can simply
delegate the entire transfer to TCP. TCP takes care of all of these details.

5.4. The Transport Layer 247

TCP Features

A TCP session starts out by establishing a communication connection be-
tween the sender and receiver. Once a connection has been created, the
parties can then communicate over the established channel. TCP ensures
reliable transmission by using a sequence number that is initialized during
the three-way handshake. Each subsequent transmission features an incre-
mented sequence number, so that each party is aware when packets arrive
out of order or not at all.

TCP also incorporates a cumulative acknowledgment scheme. Con-
sider two TCP sessions, a sender and a receiver, communicating via their
established TCP connection. After the sender sends the receiver a specified
amount of data, the receiver will confirm that it has received the data by
sending a response packet to the sender with the acknowledgment field set
to the next sequence number it expects to receive. If any information has
been lost, then the sender will retransmit it.

TCP also manages the amount of data that can be sent by one party
while avoiding overwhelming the processing resources of the other or the
bandwidth of the network itself, which is a concept known as flow control.
In particular, to efficiently manage flow control, TCP uses a technique
known as a sliding window protocol. Consider again two parties in a
TCP conversation, a sender and receiver. With each packet, the receiver
informs the sender of the size of the receive window, which is the number
of bytes of data it is willing to accept before the sender must pause and wait
for a response, indicating the receiver is ready to accept more data. The
sender also keeps track of the value of the last acknowledgment sent by the
receiver. When sending data, the sender checks the sequence number of the
packet to be sent, and only continues sending if this number is less than the
last acknowledgment number plus the current size of the receive window
(i.e., the sequence number falls within the current window of acceptable
sequence numbers). Otherwise, it waits for an acknowledgment, at which
point it adjusts its stored acknowledgment number, shifting the “sliding
window” of sequence numbers. During the process of sending data, the
sender sets a timer so that if no acknowledgment is received before the
timer expires, the sender assumes data loss and retransmits.

In addition to managing data flow, TCP supports a checksum field to
ensure correctness of data. TCP’s checksum is not intended to be cryp-
tographically secure, but rather is meant to detect inconsistencies in data
due to network errors rather than malicious tampering. This checksum is
typically supplemented by an additional checksum at the link layer, such
as Ethernet, which uses the CRC-32 checksum.

248 Chapter 5. Network Security I

Congestion Control

TCP tackles a final networking problem by implementing congestion con-
trol: an attempt to prevent overwhelming a network with traffic, which
would result in poor transmission rates and dropped packets. Congestion
control is not implemented into TCP packets specifically, but rather is
based on information gathered by keeping track of acknowledgments for
previously sent data and the time required for certain operations. TCP
adjusts data transmission rates using this information to prevent network
congestion.

TCP Packet Format

The format of a TCP packet is depicted in Figure 5.14. Note that it includes
source and destination ports, which define the communication connection
for this packet and others like it. In TCP, connection sessions are maintained
beyond the life of a single packet, so TCP connections have a state, which
defines the status of the connection. In the course of a TCP communication
session, this state goes from states used to open a connection, to those
used to exchange data and acknowledgments, to those used to close a
connection.

�������	��
��� ��� ����� ������ ������

�� �����	�
���� �	�������
����

��� �	��	��	�����	��

��� �������	���	�������	��

��� !	�� "		�#	�� $���� %&������&'	�

(�)� *+	����� ,��	���
�&��	��

(��� -����

./�(��� �����

Header

Payload

Figure 5.14: Format of a TCP packet.

5.4. The Transport Layer 249

TCP Connections

TCP uses a three-way handshake to establish a reliable connection stream
between two parties, as depicted in Figure 5.15. First, a client sends a packet
to the desired destination with the SYN flag (short for “synchronization”)
set. This packet includes a random initialization for a sequence number,
which is used to ensure reliable ordering of future data transmissions. In
response, the server replies with a packet marked with both the SYN and
ACK (short for “acknowledgment”) flags, known as a SYN-ACK packet,
indicating that the server wishes to accept the connection. This packet
includes an acknowledgment number, which is set to one more than the
received sequence number, and a new random sequence number. Finally,
the client responds with an ACK packet to indicate a successful connection
has been established. The final ACK packet features an acknowledgment
number set to one more than the most recently received sequence number,
and the sequence number set to the recently received acknowledgment
number. These choices are meant to defeat attacks against TCP based on
predicting initial sequence numbers, which are discussed in Section 5.4.4.

SYN
Seq = x

SYN-ACK
SSeq = y

Ack = x + 1

ACK
Seq = x + 1
Ack = y + 1Ack = y + 1

Figure 5.15: The three-way TCP handshake.

As mentioned above, TCP uses the notion of 16-bit port numbers, which
differentiate multiple TCP connections. TCP packets include both a source
port (the port from which the packet originated) and a destination port (the
port where the packet will be received). Ports may range from 1 to 65,535
(216 − 1), with lower port numbers being reserved for commonly used
protocols and services. For example, port 80 is the default for the HTTP
protocol, while ports 21 and 22 are reserved for FTP and SSH, respectively.

Most applications create network connections using sockets, an abstrac-
tion that allows developers to treat network connections as if they were
files. Developers simply read and write information as needed, while the
operating system handles encapsulating this application-layer information
in the lower levels of the TCP/IP stack.

250 Chapter 5. Network Security I

5.4.2 User Datagram Protocol (UDP)

In contrast to TCP, the UDP protocol does not make a guarantee about the
order or correctness of its packet delivery. It has no initial handshake to
establish a connection, but rather allows parties to send messages, known
as datagrams, immediately. If a sender wants to communicate via UDP, it
need only use a socket (defined with respect to a port on a receiver) and
start sending datagrams, with no elaborate setup needed.

While UDP features a 16-bit checksum to verify the integrity of each
individual packet, there is no sequence number scheme, so transmissions
can arrive out of order or may not arrive at all. It is assumed that checking
for missing packets in a sequence of datagrams is left to applications pro-
cessing these packets. As a result, UDP can be much faster than TCP, which
often requires retransmissions and delaying of packets.

UDP is often used in time-sensitive applications where data integrity
is not as important as speed, such as DNS and Voice over IP (VoIP). In
contrast, TCP is used for applications where data order and data integrity
is important, such as HTTP, SSH, and FTP. The format of a UDP packet is
depicted in Figure 5.16. Notice how much simpler it is than a TCP packet.

Bit Offset 0-15 16-31

0 Source Port Destination Port

32 Length Checksum

64 Data

Header

Payload

Figure 5.16: Format of a UDP packet.

5.4. The Transport Layer 251

5.4.3 Network Address Translation (NAT)

When people add computers, printers, and other network devices to their
home networks, they typically do not buy new IP addresses and setup the
new addresses directly on the Internet. Instead, they use network address
translation (NAT), which allows all the machines on a local-area network
to share a single public IP address. This public IP address represents the
point of contact with the Internet for the entire LAN, while machines on
the network have private IP addresses that are only accessible from within
the network.

Since NAT allows an entire network to be assigned a single public IP
address, widespread use of NAT has significantly delayed the inevitable
exhaustion of the IPv4 address space. In fact, there is a lot of address
capacity for NAT, because there are a number of private IP addresses that
such networks are allowed to use which cannot be used on the (public)
Internet. The private IP address are of the form 192.168.x.x, 172.16.x.x
through 172.31.x.x, and 10.x.x.x. Thus, a NAT router represents the gate-
way between private IP addresses and the public Internet, and this router is
responsible for managing both inbound and outbound Internet traffic. (See
Figure 5.17.)

NAT Router

128.195.1.48
(public IP

address) 192.168.0.1

Internet

(private IP
address)

192.168.0.101

Switch

192.168.0.102192 168 0 151

Wireless
Router

192.168.0.151

Router

192.168.0.150 192.168.0.201

192.168.0.200
192.168.0.152

Figure 5.17: An example home network setup using a NAT router.

252 Chapter 5. Network Security I

How NAT Works

To translate between private and public IP addresses, the NAT router
maintains a lookup table that contains entries of the following form:

(private source IP, private source port, destination IP, public source port)

A NAT router dynamically rewrites the headers of all inbound and out-
bound TCP and UDP packets as follows. When a machine on the internal
network attempts to send a packet to an external IP address, the NAT
router creates a new entry in the lookup table associated with the source
machine’s private IP address and the internal source port of the transmitted
packet. Next, it rewrites the source IP address to be that of the NAT device’s
public IP, opens a new public source port, and rewrites the IP header’s
source port field to contain the newly opened port. This public port and
the destination IP address are recorded alongside the private source IP and
private internal port in the NAT device’s lookup table. The NAT device also
adjusts any checksums contained in the packet, including those used by IP
and TCP/UDP, to reflect the changes made. The packet is then forwarded
to its destination.

On receiving a response, the NAT router checks its lookup table for any
entries whose public source port corresponds to the destination port of the
inbound packet and whose destination IP address (recorded because of the
previous outbound packet) corresponds to the source IP of the inbound
packet. Finally, the NAT router rewrites the IP headers of the inbound
packet according to the lookup table, so that the packet is forwarded to
the correct private IP address and private port.

This process effectively manages outbound traffic, but places several
restrictions on the possibilities for inbound traffic. An external machine has
no way of initiating a connection with a machine on the private network,
since the internal machine does not have a publicly accessible IP address.
This can actually be seen as a security feature, since no inbound traffic from
the Internet can reach the internal network. Thus, in many ways, NAT
devices can function as firewalls (Section 6.2), blocking risky contact from
the external Internet.

Network Address Translation is not a perfect solution. In fact, it violates
the ideal goal of end-to-end connectivity for machines on the Internet by
not allowing direct communication between internal and external parties.
In addition, NAT may cause problems when using several protocols, espe-
cially those using something other than TCP or UDP as a transport-layer
protocol. Still, NAT has been crucial in delaying the exhaustion of the IPv4
address space and simplifying home networking.

5.4. The Transport Layer 253

5.4.4 TCP Session Hijacking

Let us now discuss a transport-layer security concern—TCP session
hijacking—which is a way for an attacker to hijack or alter a TCP connection
from another user. Such attacks come in several flavors, depending on the
location and knowledge of the attacker.

TCP Sequence Prediction

The first type of session hijacking we discuss is a type of session spoofing,
since it creates a spoofed TCP session rather than stealing an existing one,
but we still think of it as a type of session hijacking. Recall that TCP
connections are initiated by a three-way handshake, in which the client
sends a packet with the SYN flag sent, the server replies with a packet
containing an initial sequence number and both the SYN and ACK flags
set, and the client concludes by sending a packet with the received sequence
number incremented by 1 and the ACK flag set. A TCP sequence prediction
attack attempts to guess an initial sequence number sent by the server at
the start of a TCP session, so as to create a spoofed TCP session.

Early TCP stacks implemented sequence numbers by using a simple
counter that was incremented by 1 with each transmission. Without using
any randomness, it was trivial to predict the next sequence number, which
is the key to this attack. Modern TCP stack implementations use pseudo-
random number generators to determine sequence numbers, which makes
a TCP sequence prediction attack more difficult, but not impossible. A
possible scenario might proceed as follows:

1. The attacker launches a denial-of-service attack against the client
victim to prevent that client from interfering with the attack.

2. The attacker sends a SYN packet to the target server, spoofing the
source IP address to be that of the client victim.

3. After waiting a short period of time for the server to send a reply
to the client (which is not visible to the attacker and is not acted on
by the client due to the DOS attack), the attacker concludes the TCP
handshake by sending an ACK packet with the sequence number set
to a prediction of the next expected number (based on information
gathered by other means), again spoofing the source IP to be that of
the client victim.

4. The attacker can now send requests to the server as if he is the client
victim.

254 Chapter 5. Network Security I

Blind Injection

Note that the above attack only allows one-way communication, since the
attacker cannot receive any replies from the server due to the use of IP
spoofing. Nevertheless, this method may allow an attacker to subvert a
system that executes certain commands based on the source IP address of
the requester. Indeed, Kevin Mitnick is said to have used this attack in 1995
for such a purpose. This type of attack is known as a blind injection, be-
cause it is done without anticipating being able to see the server’s response.
Alternatively, it may be possible to inject a packet containing a command
that creates a connection back to the attacker.

ACK Storms

A possible side-effect of a blind injection attack is that it can cause a client
and server to become out-of-synchronization with respect to sequence
numbers, since the server got a synchronized message the client never
actually sent. TCP incorporates a method for clients and servers to become
resynchronized when they get out of step, but it doesn’t easily tolerate
the kind of desynchronization that happens after a blind injection attack.
So, after such an attack, the client and server might start sending ACK
messages to each other, each trying to tell the other to start using “correct”
sequence numbers. This back-and-forth communication is known as an
ACK storm, and it can continue until one of these messages is lost by
accident or a firewall detects an ACK storm in progress and discards a bad
ACK message.

Complete Session Hijacking

When an attacker is on the same network segment as the target server
and/or client, an attacker can completely hijack an existing TCP session.
This attack is possible because an attacker can use packet sniffing to see the
sequence numbers of the packets used to establish the session. Given this
information, an attacker can inject a packet with a highly probable sequence
number (and a well-chosen attack command) to the server using a spoofed
source IP address impersonating the client.

If used in combination with other network attacks, the possibility of an
attacker who is in the same network segment as the target server and/or
client victim allows for an even stronger type of session hijacking attack. In
particular, an attacker on the same network segment as the client and/or
server can use packet sniffing to see the sequence numbers of the packets
used to establish a TCP session, as in a complete session-stealing attack. But
he can also sometimes go a step further, by creating a man-in-the-middle

5.4. The Transport Layer 255

situation, e.g., using the ARP spoofing method discussed in Section 5.2.3.
Once a man-in-the-middle scenario is in place, the attacker can then per-
form all subsequent actions as if he were the user he is masquerading as
(by spoofed IP source addresses), and he can intercept all responses from
both sides. (See Figure 5.18.)

Source: 128.220.10.101
Destination: 134 22 9 66

Server (target)
Destination: 134.22.9.66
Seq. no.: 1873994000
Length: 45

Client (victim) 1:

Source: 134.22.9.66
Destination: 128.220.10.101
S 10522890002: Seq. no.: 1052289000
ACK no.: 1873994045
Length: 220128.220.10.101 134.22.9.66

2:
Length: 220

Source: 128.220.10.101
Destination: 134.22.9.66(Man-in-the-middle attack) Attacker3:
Seq. no.: 1873994045
ACK no.: 1052289220
Length: 75

Attacker 4:
Length: 75

Figure 5.18: A TCP session hijacking attack.

Countermeasures

Countermeasures to TCP session hijacking attacks involve the use of en-
cryption and authentication, either at the network layer, such as using
IPsec (Section 6.3.2), or at the application layer, such as using application-
layer protocols that encrypt entire sessions. In addition, web sites should
avoid creating sessions that begin with secure authentication measures but
subsequently switch over to unencrypted exchanges. Such sessions trade
off efficiency for security, because they create a risk with respect to a TCP
session hijacking attack.

256 Chapter 5. Network Security I

5.5 Denial-of-Service Attacks

Because bandwidth in a network is finite, the number of connections a web
server can maintain to clients is limited. Each connection to a server needs a
minimum amount of network capacity to function. When a server has used
up its bandwidth or the ability of its processors to respond to requests, then
additional attempted connections are dropped and some potential clients
will be unable to access the resources provided by the server. Any attack
that is designed to cause a machine or piece of software to be unavailable
and unable to perform its basic functionality is known as a denial-of-
service (DOS) attack. This includes any situation that causes a server to not
function properly, but most often refers to deliberate attempts to exceed the
maximum available bandwidth of a server.

Because attackers in a DOS attack are not concerned with receiving
any responses from a target, spoofing the source IP address is commonly
used to obscure the identity of the attacker as well as make mitigation of
the attack more difficult. Because some servers may stop DOS attacks by
dropping all packets from certain blacklisted IP addresses, attackers can
generate a unique source IP address for every packet sent, preventing the
target from successfully identifying and blocking the attacker. This use of
IP spoofing therefore makes it more difficult to target the source of a DOS
attack. Before we can discuss countermeasures to DOS attacks, however, let
us discuss some of the different kinds of network-based DOS attacks.

5.5.1 ICMP Attacks

Two simple DOS attacks, ping flood and smurf, exploit ICMP.

The Ping Flood Attack

As discussed in Section 5.3.2, the ping utility sends an ICMP echo request to
a host, which in turn replies with an ICMP echo response. Normally, ping
is used as a simple way to see if a host is working properly, but in a ping
flood attack, a powerful machine can perform a DOS attack on a weaker
machine. To carry out the attack, a powerful machine sends a massive
amounts of echo requests to a single victim server. If the attacker can create
many more ping requests than the victim can process, and the victim has
enough network bandwidth to receive all these requests, then the victim
server will be overwhelmed with the traffic and start to drop legitimate
connections.

5.5. Denial-of-Service Attacks 257

The Smurf Attack

A clever variation on this technique that takes advantage of misconfigured
networks is known as a smurf attack. Many networks feature a broadcast
address by which a user can send a packet that is received by every IP
address on the network. Smurf attacks exploit this property by sending
ICMP packets with a source address set to the target and with a destination
address set to the broadcast address of a network.

Once sent, each packet is received by every machine on the network,
at which point every machine sends a reply ICMP packet to the indicated
source address of the target. This results in an amplification effect that
multiplies the number of packets sent by the number of machines on the
network. In these attacks, the victim may be on the exploited network, or
may be an entirely remote target, in which case the identity of the attacker
is further obscured. An example of a smurf attack is depicted in Figure 5.19.

S dd

Amplifying

Source address
is spoofed with
Target’s IP address Amplifying

Network
g

echo
response

echo
request

echo
response

Attacker

response

Attacker
Target

echo
response

Figure 5.19: A smurf attack uses a misconfigured network to amplify traffic
intended to overwhelm the bandwidth of a target.

To prevent smurf attacks, administrators should configure hosts and
routers on their networks to ignore broadcast requests. In addition, routers
should be configured to avoid forwarding packets directed to broadcast
addresses, as this poses a security risk in that the network can be used as a
ping flood amplifier. Finally, if a server is relatively weak, it would be wise
for it to ignore ping requests altogether, to avoid ping floods.

258 Chapter 5. Network Security I

5.5.2 SYN Flood Attacks

Another type of denial-of-service attack is known as a SYN flood attack.
Recall (from Section 5.4.1) that to initiate a TCP session, a client first sends a
SYN packet to a server, in response to which the server sends a SYN/ACK
packet. This exchange is normally then followed by the client sending
a concluding ACK packet to the server. If the client never sends the
concluding ACK, however, the server waits for a certain time-out period
and then discards the session.

How a SYN Flood Attack Works

In the SYN flood attack, an attacker sends a large number of SYN packets
to the server, ignores the SYN/ACK replies, and never sends the expected
ACK packets. In fact, an attacker initiating this attack in practice will
probably use random spoofed source addresses in the SYN packets he
sends, so that the SYN/ACK replies are sent to random IP addresses. If
an attacker sends a large amount of SYN packets with no corresponding
ACK packets, the server’s memory will fill up with sequence numbers that
it is remembering in order to match up TCP sessions with expected ACK
packets. These ACK packets will never arrive, so this wasted memory
ultimately blocks out other, legitimate TCP session requests.

Defenses Against SYN Flood Attacks

One commonly used technique to prevent SYN flooding features a mecha-
nism known as SYN cookies, which is credited to Daniel Bernstein. When
SYN cookies are implemented, rather than dropping connections because
its memory is filled, the server sends a specially crafted SYN/ACK packet
without creating a corresponding memory entry. In this response packet,
the server encodes information in the TCP sequence number as follows:

• The first 5 bits are a timestamp realized as a counter incremented
every minute modulo 32.

• The next 3 bits are an encoded value representing the maximum
segment size of transmission.

• The final 24 bits are a MAC (Section 1.3.4) of the server and client
IP addresses, the server and client port numbers, and the previously
used timestamp, computed using a secret key.

5.5. Denial-of-Service Attacks 259

How SYN Cookies Work

According to the TCP specification, a legitimate client must reply with a
sequence number equal to the previously sent sequence number plus 1.
Therefore, when a client replies with an ACK packet, the server subtracts 1
to obtain the previously sent sequence number. It then compares the first
5 bits with the current timestamp to check if the connection has expired.
Next, the server recomputes the 24-bit MAC using known IP and port
information and compares with the value encoded in the sequence number.
Finally, the server decodes the middle 3 bits to finish reconstructing the SYN
queue entry, at which point the TCP connection can continue. If everything
checks out with this SYN cookie check, then the server initiates the TCP
session.

SYN Cookies Limitations

At the time of this writing, Windows has not adopted SYN cookies, but
they are implemented in several Linux distributions. Lack of widespread
adoption may be due to some limitations introduced by the use of SYN
cookies:

• The maximum segment size can only be eight possible values, since
this is the most information that can be encoded in 3 bits.

• SYN cookies do not ordinarily allow the use of the TCP options field,
since this information is usually stored alongside SYN queue entries.

Recent Linux SYN cookie implementations attempt to address this second
limitation by encoding TCP option information in the timestamp field of
TCP packets. Nevertheless, the inability to use several TCP options, many
of which have become commonplace in the years since the initial devel-
opment of SYN cookies, has made SYN cookies an unacceptable option in
some situations.

Alternatives to SYN Cookies

As an alternative, techniques have been developed to more effectively
manage half-opened connections, including implementing a special queue
for half-open connections and not allocating resources for a TCP connection
until an ACK packet has been received. These techniques are currently
implemented in Windows.

260 Chapter 5. Network Security I

5.5.3 Optimistic TCP ACK Attack

As mentioned in Section 5.4.1, the number of TCP packets allowed to be
outstanding during a TCP communication session before requiring an ACK
is known as a congestion window. As a server receives ACKs from a
client, it dynamically adjusts the congestion window size, w, to reflect the
estimated bandwidth available.

The window size grows when ACKs are received, and shrinks when
segments arrive out of order or are not received at all, indicating missing
data. In so doing, TCP helps to keep network congestion down while also
trying to push data through the Internet as quickly as possible without
overloading the capacity of the routers along the path that the packets
are traveling. This congestion-control nature of TCP automatically adjusts
as network conditions change, shrinking the congestion window when
packets are lost and increasing it when they are successfully acknowledged.

How the Optimistic TCP ACK Attack Works

An optimistic TCP ACK attack is a denial-of-service attack that makes the
congestion-control mechanism of TCP work against itself. In this attack,
a rogue client tries to make a server increase its sending rate until it runs
out of bandwidth and cannot effectively serve anyone else. If performed
simultaneously against many servers, this attack can also create Internet-
wide congestion by overwhelming the bandwidth resources of routers
between the victims and attacker.

The attack is accomplished by the client sending ACKs to packets before
they have been received to make the server increase its transmission speed.
The aim of the client is to acknowledge “in-flight” packets, which have been
sent by the server but have not yet been received by the client.

Defense Against the Optimistic TCP ACK Attack

While this attack has potentially serious impact, it has only rarely been
performed in practice. Because the vulnerability is a consequence of the
design of the TCP protocol itself, a true solution would require a redesign
of TCP. Nevertheless, a real-life attack can be mitigated by implementing
maximum traffic limits per client at the server level, and by promptly
blocking traffic from clients whose traffic patterns indicate denial-of-service
attempts. So it is not a major concern in practice.

5.5. Denial-of-Service Attacks 261

5.5.4 Distributed Denial-of-Service

Today, most standard DOS attacks are impractical to execute from a single
machine. Modern server technology allows web sites to handle an enor-
mous amount of bandwidth—much greater than the bandwidth possible
from a single machine. Nevertheless, denial-of-service conditions can still
be created by using more than one attacking machine, in what is known
as a distributed denial-of-service (DDOS) attack. In this attack, malicious
users leverage the power of many machines (sometimes hundreds or even
thousands) to direct traffic against a single web site in an attempt to create
denial-of-service conditions. Major web sites, such as Yahoo!, Amazon, and
Google, have been the targets of repeated DDOS attacks. Often, attackers
carry out DDOS attacks by using botnets—large networks of machines that
have been compromised and are controllable remotely. (See Figure 5.20.)

Botnet Controller (Attacker)

Attack Commands

Botnet:

Network Requestsq

Victim

Figure 5.20: A botnet used to initiate a distributed denial-of-service attack.

In theory, there is no way to completely eliminate the possibility of a
DDOS attack, since the bandwidth a server is able to provide its users
will always be limited. Still, measures may be taken to mitigate the risks
of DOS attacks. For example, many servers incorporate DOS protection
mechanisms that analyze incoming traffic and drop packets from sources
that are consuming too much bandwidth. Unfortunately, IP spoofing may
make DDOS prevention more difficult, by obscuring the identity of the
attacker bots and providing inconsistent information on where network
traffic is coming from.

262 Chapter 5. Network Security I

5.5.5 IP Traceback

In part prompted by the difficulties in determining the true origins of
DDOS attacks featuring spoofed IP addresses, researchers have attempted
to develop the concept of IP traceback: determining the actual origin of a
packet on the Internet, without relying on the IP source field contained in
that potentially falsified packet.

Early IP traceback techniques relied on logging each packet forwarded
by each router. While this approach may be effective, it places significant
space requirements on routers, which may not have incentive to cooperate.
A commonly proposed alternative relies on a technique known as packet
marking. In this approach, routers probabilistically or deterministically
mark forwarded packets with information related to the path that packet
has taken up to that point. Packet-marking schemes have an advantage
in that once a victim has received enough packets to reconstruct a path to
the attacker, no further cooperation is needed on the part of intermediate
routers. A naive scheme would require each router to simply append its
address to the end of a packet before forwarding it to the next router.
While this approach has the advantage that a single packet carries all the
information necessary to reconstruct a path to the attacker, it has a critical
limitation in that it places unreasonably high overhead on routers, which
must append data to every packet passing through. In addition, there is no
mechanism to determine whether packets actually have the unused space
necessary to record the complete path, besides inspecting the packet in-
flight and possibly incurring further overhead by fragmenting the packet.

A more advanced approach to packet marking is known as node sam-
pling. Rather than encoding in each packet a list representing the entire
path, a single field in the IP packet that has only enough room for one
address is used. Each router overwrites this field of each packet with its
own address with some probability p. Given enough packets marked in
this way, a victim can use this field to determine each router traversed
between the attacker and the victim. To reconstruct the path, note that
in a large sample of marked packets, more packets will be marked with
the addresses of routers that are closest to the victim. For example, the
probability that a packet will be marked by the nearest router to the victim
is p, the probability that a packet will be marked by the second-nearest
router (and not overwritten by the nearest router) is p ∗ (1− p), and so on.
Therefore, by computing the expected number of marked packets for each
network hop and correlating these figures with the proportions of packets
retaining marks by each router, the path can be reconstructed.

5.5. Denial-of-Service Attacks 263

Several other IP traceback techniques have been developed, including
some that rely on the use of additional network protocols such as ICMP to
relay path information. While many innovative schemes exist, few have
been implemented in practice, in part due to the fact that these techniques
require widespread cooperation from Internet routers. IP traceback is an
example of a technique that attempts to solve the problem of authentication
at the network layer. Protocol extensions such as IPsec (Section 6.3.2) and
solutions such as Virtual Private Networking (Section 6.3.3) address the
same problem by requiring cryptographic authentication for packets to
verify their origin.

264 Chapter 5. Network Security I

5.6 Exercises

For help with exercises, please visit securitybook.net.

Reinforcement

R-5.1 How many IP addresses are available under IPv6? Is it realistic to
say that IPv6 will never run out of addresses?

R-5.2 What is the difference between a MAC address and an IP ad-
dress?

R-5.3 Can two network interfaces have the same MAC address? Why or
why not?

R-5.4 In the three-way handshake that initiates a TCP connection, if the
SYN request has sequence number 156955003 and the SYN-ACK
reply has sequence number 883790339, what are the sequence and
acknowledgment numbers for the ACK response?

R-5.5 Can two network interfaces have the same IP address? Why or
why not?

R-5.6 Show why installing static ARP tables on the machines of a local-
area network does not prevent a malicious machine from intercept-
ing traffic not intended for it.

R-5.7 Describe the difference between a switch, hub, and IP router, in-
cluding their respective security implications.

R-5.8 What is an ACK storm and how does it start?
R-5.9 Jill lives in a large apartment complex and has a Wi-Fi access

point that she keeps in her apartment. She likes her neighbors,
so she doesn’t put any password on her Wi-Fi and lets any of her
neighbors use her Wi-Fi from their nearby apartments if they want
to access the Internet. What kinds of security risks is Jill setting
herself up for?

R-5.10 Explain how IP broadcast messages can be used to perform a smurf
DOS attack.

R-5.11 Describe how sequence numbers are used in the TCP protocol.
Why should the initial sequence numbers in the TCP handshake
be randomly generated?

R-5.12 Why is it that packet sniffing can learn so much about the content
of IP packets?

R-5.13 Explain why audio and video streams are typically transmitted
over UDP instead of TCP.

5.6. Exercises 265

R-5.14 TCP connections require a lot of overhead, as compared to UDP.
Explain why web sites and file transfers are nevertheless typically
transmitted over TCP instead of UDP.

R-5.15 How is it that a machine of a private network behind a NAT router
can make a connection with a web server on the public Internet?

R-5.16 What is a distributed denial-of-service attack and how is it possible
for a single person to orchestrate one?

Creativity

C-5.1 How many bytes are devoted to header and footer information
(with respect to all layers of the IP protocol stack) of an Ethernet
frame that contains a TCP packet inside it?

C-5.2 What is the absolute maximum number of IP addresses available
under IPv4 if NAT is used to extend each one as much as possible?

C-5.3 Show how to extend the man-in-the-middle attack described in
Section 5.2.3 to intercept all documents sent to a printer in a local-
area network.

C-5.4 Suppose you suspect that your session with a server has been
intercepted in a man-in-the-middle attack. You have a key, K, that
you think you share with the server, but you might be only sharing
it with an attacker. But the server also has a public key, KP, which
is widely known, and a private secret key, KS, that goes with it.
Describe how you can either confirm you share K with the server
or discover that you share it only with a man-in-the-middle. Also,
be sure your solution will not be discovered by a packet sniffer.

C-5.5 Explain how to use the three-way TCP handshake protocol to
perform a distributed denial-of-service attack, such that the victim
is any host computer and the “bots” that are bombarding the victim
with packets are legitimate web servers.

C-5.6 Describe a data structure for keeping track of all open TCP connec-
tions for a machine. The data structure should support efficiently
adding and deleting connections and searching by host, source
port, and destination port.

C-5.7 Most modern TCP implementations use pseudo-random number
generators (PRNG) to determine starting sequence numbers for
TCP sessions. With such generators, it is difficult to compute the
ith number generated, given only the (i− 1)st number generated.
Explain what network security risks are created if an attacker is
able to break such a PRNG so that he can in fact easily compute the
ith number generated, given only the (i− 1)st number generated.

266 Chapter 5. Network Security I

C-5.8 Either party in an established TCP session is allowed to instantly
kill their session just by sending a packet that has the reset bit, RST,
set to 1. After receiving such a packet, all other packets for this
session are discarded and no further packets for this session are
acknowledged. Explain how to use this fact in a way that allows a
third party to kill an existing TCP connection between two others.
This attack is called a TCP reset attack. Include both the case where
the third party can sniff packets from the existing TCP connection
and the case where he cannot.

C-5.9 The TCP reset attack, described in the previous exercise, allows an
ISP to easily shutdown any existing TCP session that connects a
host in its network to another machine on the Internet. Describe
some scenarios where it would be ethical and proper for an ISP
to kill such a TCP session in this way and where it would not be
ethical and proper to do so.

C-5.10 You are the system administrator for an provider that owns a large
network (e.g., at least 64,000 IP addresses). Show how you can use
SYN cookies to perform a DOS attack on a web server.

C-5.11 Show how to defend against the DOS attack of Exercise C-5.10.

C-5.12 Describe how to modify a NAT router to prevent packets with
spoofed IP addresses from exiting a private network.

C-5.13 To defend against optimistic TCP ACK attacks, it has been sug-
gested to modify the TCP implementation so that data segments
are randomly dropped by the server. Show how this modification
allows one to detect an optimistic ACK attacker.

C-5.14 You just got a call from the University system administrator, who
says that either you or your roommate is issuing denial-of-service
attacks against other students from your shared network segment.
You know you are not doing this, but you are unsure about your
roommate. How can you tell if this accusation is true or not? And
if it is true, what should you do about it?

C-5.15 Johnny just set up a TCP connection with a web server in Chicago,
Illinois, claiming he is coming in with a source IP address that
clearly belongs to a network in Copenhagen, Denmark. In exam-
ining the session logs, you notice that he was able to complete the
three-way handshake for this connection in 10 milliseconds. How
can you use this information to prove Johnny is lying?

5.6. Exercises 267

Projects

P-5.1 On an authorized virtual machine network, define three Linux
virtual machines, Host A, Host B, and Attacker, which could in
fact all really be on the same host computer. Let these machines be
on the same LAN. On Attacker (using super-user privilege), write
a simple sniffing tool to capture the packets going from Host A to
Host B. Print out the header of the packets. The pcap library can be
used to implement this tool.

P-5.2 On an authorized virtual machine network, define three virtual
machines, Client, Server, Attacker, and Observer, which could in
fact all really be on the same host computer. Using a packet-
building tool, like Netwox, which can create TCP, UDP, or IP
packets, have the Attacker perform an ARP spoofing attack on the
Client, so that all traffic from the Server to the Client now goes to
the Attacker. Have the Observer confirm the success of this attack
using a packet sniffer.

P-5.3 On an authorized virtual machine network, define three virtual
machines, Server, Attacker, and Observer, which could in fact all
really be on the same host computer. Using a packet-building tool,
like Netwox, which can create TCP, UDP, or IP packets, have the
Attacker perform an SYN flood on the Server. Have the Observer
confirm the success of this attack using a packet sniffer and failed
attempts to establish TCP connections with the Server.

P-5.4 On an authorized virtual machine network, define three virtual
machines, Client, Attacker, and Observer, which could in fact all
really be on the same host computer. Using a packet-building tool,
like Netwox, which can create TCP, UDP, or IP packets, have the
Attacker sniff the packets from the Client and then perform an TCP
reset attack (see Exercise C-5.8) on the Client. Have the Observer
confirm the success of this attack using a packet sniffer while the
Client is connected to a popular video-streaming web site on the
Internet.

P-5.5 On an authorized virtual machine network, define four virtual ma-
chines, Client, Server, Attacker, and Observer, which could in fact
all really be on the same host computer. Using a packet-building
tool, like Netwox, which can create TCP, UDP, or IP packets, have
the Attacker perform a TCP session hijacking attack on a TCP con-
nection established between the Client and the Server. Test both the
case when the Attacker can sniff packets from this communication
and the case when he cannot (this latter case might seem difficult,

268 Chapter 5. Network Security I

but with 32-bit sequence numbers it is not impossible). Have the
Observer confirm the success or failure of this attack using a packet
sniffer.

P-5.6 Design and implement a system to make a TCP/IP connection
between two virtual machines on a virtual machine network.

P-5.7 Design and implement the software for a NAT router.
P-5.8 Working in a team of two or three people, find a Wi-Fi access point

and access it with at least two laptop computers, one of which has
packet-sniffing software installed. Take turns having one person
access the Internet using various tools, such as browsers and email
clients, and having another person watch their packets. Write a
joint report describing the session, including the issues of privacy
and security that it raises.

Chapter Notes

The books by Comer [18] and Tanenbaum [100] cover in detail computer networks
and the protocols outlined in this chapter. Fundamentals of network security
are presented in the books by Kaufman, Perlman, and Speciner [46] and by
Stallings [96]. Authoritative references for Internet standards are the Request
for Comments (RFC) documents by the Internet Engineering Task Force (IETF).
Specifically, the network protocols mentioned in this chapter are described in the
following RFCs:

• RFC 768: User Datagram Protocol (UDP)

• RFC 791: Internet Protocol (IP)

• RFC 792: Internet Control Message Protocol (ICMP)

• RFC 793: Transmission Control Protocol (TCP)

• RFC 826: Address Resolution Protocol (ARP)

Bellovin gives an overview of the vulnerabilities of the core Internet protocols [4].
The optimistic TCP acknowledgment attack is described in CERT vulnerability
note VU#102014 and in the papers by Savage et al. [87] and by Sherwood et al. [93].
In particular, the defense mechanism described in Exercise C-5.13 is from [93].

